The DDS User Manual v3.6

The DDS User Manual v3.6

Table of Contents

O [gL oo (01T o o H PSP SPPPTTRN 1
1.1. The Dynamic DeploymENt SYSEEMcveiutniiiiii ettt et e et e e et eeanes 1

1.2, BSIC CONCEPLS .. vtueeeeeti ettt e ettt ettt ettt ettt ettt e e ettt e et e e e e et et r et e et n e e e et e e ennan s 1

L.3. FBBIUIES ...ttt ettt et e e 1

2. REQUITEIMENTS ...ttt et et ettt ettt e e ettt e et e e bt e et e et n e e e eebeneeeenbnnaeeens 2
2.1 SEIVEITUL et 2

2.2, WOTKENS ..ot ettt et ettt et e s 2

B o 1 o1 o= o E PSP PPPPTT 3
3. 1. DOWNIOAO TOCEIION ...ttt ettt et e et e e e et e et e e e ena e e e ennas 3

3.2. DDS Version NUMbDEr SChEemeoviiiiie e 3

A, INSEAIBLITON ..ttt ettt et et 4
A1, SHEP H#L: GEE thE SOUMCE ...ttt ettt e ettt e ettt e e ettt e e eenenaaeees 4
4.1.1. from DDS git FEPOSITONY .. .ceeetieeiitie ettt e et e e e et e et e e e 4

4.1.2. from DDS S0UrCe tarballoviiiiiiiiiii e 4

4.2. Step #2: Configure the SOUMCEiiiie et 4

4.3. Step #3: BUIld and iNSLAlL ..o e 5

4.4, Step #4: DDS ENVITONIMENToiiiiiiiiii ettt e et e e e e 5

B, CONFIGUIBLION ...ttt ettt ettt e ettt e et e b e e et et e e et et e e ettt e e e e et 6
LS @ U ot QS - | PP 8
A o] o oo |V PP OPPTTR 9
7.1 TOPOIOGY Il ettt 9

7.2. TOPOlogy file @XAMPIE .. .o 9

7.3. TOpology XML tag FEFErENCEu ittt e 12

8. HOW 10 SHAIT ..t 19
o B = 0 V100101 = | T PP TRTROP PR 19

S < 4V S PP PPN 19

8.3, DEDIOY AGENES ...ttt ettt ettt ettt e e e e e e et et e e e eab e aaes 19
8.3.1. Deploy-Agents uSiNg: SSH PIUG-INiiiiteeiii e 19

8.4. Check availability Of AGENESoeuu i 19

8.5, ACHVEALE TOPOIOGY ... eeeitiieeeiti ettt ettt e et e et e e et e e e e e e e e era s 19

1S o [T (o T I = PP 21
9.1 FISE SECLION ..ttt et e e ettt 21

O 10 = PP PP PRSPPI 22
05 0 1o = PP P PP PPPPTT 22

O N U L o TP PP PPPPTTUPPPIN 22

FO.1.2. RESUIT ..ottt ettt e 22

FO.2. TULOMTBI 2 ..ttt ettt ettt ettt e e et e e et et e et enb e et et e e eeaans 22
B0.2.0. USAOE ettt ettt et et et ettt et e e e et a e e e aba e aee 23

F0.2.2. RESUIT ..ottt e s 23

11, Command-liNE INTEITACEceeie e e et e e e eeeees 24
AOSSESSION .ttt ettt en e e e e s 25
OS-COMMBNOEY ...ttt ettt et e ettt e et et e et et e e e e et e e e e eba s 27
OSUSEN-OEFALITS ...t ettt e ettt e e et et e et enb e e eentnaeeeees 28
o[0T o0 1) PSP UPPPTPR 30
(00 S o1 { TP PTRP 31
00 S (= U PSPPSR 32

o0 Sy (o] o o] [o'e |V APPSO PTT R UPPPTRRUPPIN 33
OS-BOENT-CMA ...ttt e e e e ettt e e e e e e e b 34

12, RIMS PIUGRINS <.ttt ettt ettt e et et e et et e et et e e e e eaan s 35
12,1, FOr DEVEIOPENS ...ttt ettt e e ettt ettt e 35
12.1.0. BBSIC CONCEPL . eevtieeeeiti ettt e e ettt e e ettt e e ettt e e et e e et et e e et et e e e e et e e et et e e e eenan s 35

12.1.2. REQUITEIMENTS ...eeeetiee et e ettt ettt ettt ettt e e et e e e et e et et r e et eee e e e et e e eenan s 35

e R L o TP PP PPT R UPPPTIN 35

22 2, SOH e e et et e e e e e e e aen 37
12.2.1. RESOUICE EfiNMITION ... iiieiti ettt e e e e e e enees 37

The DDS User Manual v3.6

12.2.2. EXAMPIE USAQE .vuuiiiiieiii ettt et e e e e e e e et e e e e e et e et e e et neeanaee
2 T 1o o 10 =
b2 50 O 1 1 oo [T ' o PN
12.3.2. EXAMPIE USAQE .vuuiiiiieiii ettt et e e e e e e e e e e e e e e e et e e e e ea

12.4. SLURM

20 T TS 4 o [oo (o [= ot o Y
2 R U= = oo 1 o 0= 4 o] o PP
12.4.3. USAQE EXAMPIE ..itiiiiiii e e e e e e e e e e r e e

List of Tables

4.1. DDS configuration VATADIESiiiiieieieit et 4
5.1. DDS configuration VaITADIESiiiiiiiie e 6
7.1, TOPOIOGY XML TBOS ... eeeetieeeeett e ettt ettt e et e et e e e et et r e et et e e et et e e e e b e e e enan s 12
7.2. TOPOlogy XML SHIDULESceeiiieeeie et e e e e 16
12.1. DDS's SSH plug-in configuration fIEldSccoouuiiiiii e 37

List of Examples

7.1. A topology fil@ EXBMPIE ... et
11.1. A ddS-SESSION COMMAND USBJE ... eeereneeeetineteeti e e eat e et et e et e et e et e ab e et e et e et e bb e e e e bb e e e e raa s
12.1. An example of an SSH plug-in configuration fileccooiiiiiiiii e

Vi

1. Introduction
1.1. The Dynamic Deployment System

The Dynamic Deployment System (DDS) - isatool -set that automates and significantly simplifies adeployment of
user defined processes (tasks) and their dependencies on any resource management system using agiven topology.

In order to execute user tasks, DDS deploys agents. Each agent supports multiple tasks slots and therefore is able
to run and watchdog multiple tasks simultaneously. Agent can be deployed using the dds-submimt command.

1.2. Basic concepts

DDS:

implements a single-responsibility-principle command line tool-set and APIs,
treats users' tasks as black boxes,

doesn’'t depend on RM S (provides deployment via SSH, when no RMSis present),
supports workers behind Firewalls (outgoing connection from WNs required),
doesn’t require pre-installation on WNSs,

deploys private facilities on demand with isolated sandboxes,

provides a key-value properties propagation service for tasks,

providesasimple custom command protocol, to help tasksto communicate between each other and with process
outside of the topology,

provides arules based execution of tasks.

1.3. Features

2. Requirements
2.1. Server/Ul

DDS Ul/Server/WN run on Linux and Mac OS X.

General requirements:
* Incoming connection on dds-commander port (configurable)
e aC++11 compiler

» cmake 3.11.0 or higher

BOOST 1.67 or higher (built by a C++11 compiler, with C++11 enabled)

shell: BASH (or a compatible one)

Additional requirementsfor SSH plug-in:

* A public key access (or password less, via ssh-agend, for example€) to destination worker nodes.

2.2. Workers

General requirements:

» Outgoing connection on dds-commander's port (configurable). Thisis required by dds-agent to be able to con-
nect to DDS commander server

 shell: BASH (or acompatible one)

http://www.cmake.org/
http://www.boost.org/
http://en.wikipedia.org/wiki/Bash_(Unix_shell)
http://en.wikipedia.org/wiki/Bash_(Unix_shell)

3. Download

3.1. Download location

Please, use DDS's Download page to get the latest version and all other versions of DDS.

3.2. DDS Version Number Scheme

DDS version has aform of MAJOR.MINOR(.PATCH), where:
* MAJOR - the major number isincreased when there are significant jumps in functionality.
* MINOR - the minor number isincremented when only minor features or significant fixes have been added.

» PATCH - represents a number of commits (patches) to a current major.minor pair.
= Note
The DDS's version scheme reflects the fact that DDS is both a production system and a research

project. DDS uses odd minor version numbers to denote devel opment releases and even minor ver-
sion numbersto denote stable releases.

http://dds.gsi.de/download.html

4. Installation

4.1. Step #1: Get the source
4.1.1. from DDS git repository

git clone https://github.com Fai r Root G oup/ DDS. gi t DDS- mast er
cd ./ DDS- nmast er

4.1.2. from DDS source tarball

Unpack DDS tarball:

tar -xzvf DDS-X. Y.Z-Source.tar.gz

Tar will created anew directory . / DDS- X. Y. Z- Sour ce, where X. Y. Z represents aversion of DDS.

cd ./DDS-X. Y. Z-Source

4.2. Step #2: Configure the source

You can adjust some configuration settings in the Bui | dSet up. cnake bootstrap file. The following is alist
of variables:

Table4.1. DDS configuration variables

Variable Description

CMAKE_INSTALL_PREFIX Install path prefix, prepended onto install directo-
ries.(default SHOME/DDS/[DDS _Version])

CMAKE_BUILD_TYPE Set cmake build type. Possible options are: None, De-
bug, Release, RelWithDeblnfo, MinSizeRel (default
Release)

BUILD_DOCUMENTATION Build source code documentation. Possible options are:
ON/OFF (default OFF)

BUILD_TESTS Build DDStests. Possible optionsare: ON/OFF (default
OFF)

Now, prepare a build directory for an out-of-source build and configure the source:

nmkdir build
cd build
cmake -C ../ Buil dSetup. cmake ..

am Tip

|

\d If for some reason, for example a missing dependency, configuration failed. After you get the issue
fixed, right before starting the cmake command it is recommended to delete everything in the build
directory recursively. Thiswill guaranty aclean build every timethe source configurationisrestarted.

Installation

4.3. Step #3: Build and install

I ssue the following commands to build and install DDS:

make -j

make i nstall

@

o

I nstallation Prefix

Please note, that by default DDSwill beinstalled in $HOVE/DDS/X.Y .Z, where X.Y .Z isaversion of
DDS. However users can change this behavior by setting theinstall prefix path in the bootstrap script
Bui | dSet up. crmake. Just uncomment the setting of CMAKE_INSTALL_PREFIX variable and
change dummy MY_PATH_HERE to adesired path.

WN package

Users have a possibility to additionally build DDS worker package for the local platform. In case
if you have same OS types on all of the target machines and don't want to use WN packages from
the DDS binary repository, just issue:

make -j wn_bin
make install

the commands will build and install a DDS worker package for the given platform.

We also recommend to build boost without icu library support. Thiswill reduce the size of the WN
package dramatically. The following is boost build options you can use to switch of icu:

./ bootstrap.sh --without-icu ...
./ b2 --disable-icu ...

4.4. Step #4: DDS Environment

In order to enable DDS's environment you need to sourcethe DDS_env. sh script. Changeto your newly installed
DDSdirectory and issue:

cd [DDS | NSTALL DI RECTORY]
source DDS env. sh

You need to source this script every time before using DDS in a new system shell. Simplify it by sourcing the
script in your bash profile.

http://site.icu-project.org

5. Configuration

The default location of DDS's configuration fileis~/ . DDS/ DDS. cf g. If missing, the configuration file will be
automatically created once the DDS environment script is sourced.

DDS's configuration engine looks for the configuration file in the following order:

1. $HOVE/ . DDS/ DDS. cf g
2. $DDS_LOCATI OV et ¢/ DDS. cf g

3. $DDS_LOCATI ON/ DDS. cf g
Table5.1. DDS configuration variables

Key

server.work_dir

server.sandbox_dir

server.log_dir

server.log_severity level

server.log_rotation size
server.log_has console output
server.commander_port_range min and server.com-

mander_port_range_max

server.idle_time

Description

DDS commander will use this directory to create ses-
sionfiles.

Some RMS, like LSF and slurm for example, require
a shared files system to submit jobs. A shared folder
(shared between the submit host and worker nodes).
DDS will place RMS job script in this folder and will
also use this folder as a sandbox for DDS workers.

DDS commander will use this directory for logs.

A global log severity level. Used by all DDS modules.

Log severity can be one of the following
values:

e p_| - protocol low level events and higher,

e p_m - protocol middle level events and higher,
e p_h- protocol high level events and higher,

« dbg - genera debug events and higher,

« inf - info events and higher,

e wrn - warning events and higher,

 er - error events and higher,

» fat - fatal errors.

Log rotation size in MB. Once a log file reaches this
number DDS will automatically create another log file.

Oor 1. If 1, then DDS console outputswill be also saved
into the log.

A port range used by the commander.

Anidletimein seconds. DDS Commander and Agents
respect this number and will automatically shutdown if
inactive for this amount of seconds.

Configuration

Key Description

agent.work_dir Usethiskey if you want to rel ocate working directories
of DDS agents. By default they will use the directory
specified by "server.sandbox_dir".

6. Quick Start

* Download DDS source tarball.

* Install DDS from source.

cd [DDS | NSTALLATI ON|

source DDS env. sh

dds- sessi on start

dds-submt --rns | ocal host --slots 50

dds-info -n

dds-info -I

dds-t opol ogy --activate $DDS LOCATI OV tutorial s/tutorial 1/tutorial 1_topo.xmn

Enable DDS environment.

Start DDS commander server.

Deploy 1 DDS agent with 50 task slots on the localhost.

Use dds-info to find out a number of agents, which are online.
Use dds-info to check detailed information about agents.

Set and activate the topology.

/. Topology

The definition of the topology by the user has to be simple and powerful at the sametime. Therefore asimple and
powerful so called topology language has been devel oped.

Thebasic building block of the system isatask. Namely, atask isauser defined executable or ashell script, which
will be deployed and executed by DDS on a given Resource Management System.

In order to describe dependencies between tasks in a topology we use properties. In run-time properties will be
turned into simple key-value pairs. DDS uses its key-val ue propagation engine to make sure, that once property is
set by onetask, it will be propagated to other depended tasks. DD Streats values of properties as simple stringsand
doesn't do any special treatment/preprocessing on them. So, basically tasks can write anything into the values of
properties (256 char max). Any of depended tasks can set properties. Anytime property is set it will be propagated
to other depended tasks. (see for details TODO:"key-value propagation").

am Tip

|

\d For example, if one task needs to connect with another task they can have the same property. A
"server" task can store its TCP/IP port and host in the property. Once the property set, DDS will
notice that and propagate it to other tasks.

Tasks can be grouped into collections and groups. Both collections and groups can be used to group several tasks.
The main difference between collections and groups is that a collection requests from DDS to execute its tasks
on the same physical machine, if resource alow that. Thisis useful if tasks suppose to communicate alot or they
want to access the same shared memory. A set of tasks and task collections can be also grouped into task groups.
Another difference between groups and collection is that only groups can define multiplication factor for al its
child elements.

Main group defines the entry point for task execution. Only main group can contain other groups.

7.1. Topology file

At the moment we use an XML based file to store topologies. XML is chosen because it can be validated against
XSD schema. DDS's XSD schema file can be found in $DDS_LOCATI QV shar e/ t opol ogy. xsd.

<t opol ogy nane="nmyTopol ogy" >

[... Definition of tasks, properties, and collections ...]
<mai n name="mai n">

[... Definition of the topology itself, where also groups can be defined ...]
</ mai n>

</t opol ogy>

Thefileisbasically divided on two parts. declaration and main part.

All properties, tasks and collections should be defined in the declaration part of the file. Users can define any
number of topology entitiesin that block, even some, which are not going to be used in the main block.

In the main block the topology itself is defined. Groups and multiplication factors are al so defined in main block.

7.2. Topology file example

Example 7.1. A topology file example

<t opol ogy nane="nyTopol ogy" >

<var nane="appNaneVar" val ue="appl -1 -n --tasklndex % asklndex% --col |l ectionl ndex %

Topology

<var nane="nof G oups" val ue="10" />

<property nane="propertyl" />
<property nane="property2" />

<decl requi renent nanme="requi renent 1" type="host nane" val ue="+.gsi.de"/>
<decl trigger name="trigger1l" condition="TaskCrashed" action="Restart Task" arg="5"/>

<decl task name="task1l">
<requi rement s>
<name>r equi r ement 1</ nane>
</requirenent s>
<exe reachabl e="true" >${appNaneVar } </ exe>
<env reachabl e="fal se">envl</env>
<properties>
<nanme access="read" >propertyl</nane>
<nanme access="readw ite">property2</nane>
</ properties>
<triggers>
<nane>tri gger 1</ nane>
</triggers>
</ decl t ask>
<decl task name="task2">
<exe>app2</ exe>
<properties>
<nane access="wite">propertyl</nane>
</ properties>
</ decl t ask>

<decl col | ecti on name="col | ecti onl">
<r equi rement s>
<name>r equi r ement 1</ nane>
</requirenent s>
<t asks>
<name>t ask1</ nanme>
<name>t ask2</ nanme>
<name>t ask2</ nanme>
</t asks>
</ decl col | ecti on>

<decl col | ecti on name="col | ecti on2">
<t asks>
<name>t ask1</ nanme>
<name>t ask1</ nanme>
</t asks>
</ decl col | ecti on>

<mai n nanme="rmi n" >
<t ask>t askl</t ask>
<col | ecti on>col | ecti onl</coll ection>
<group name="groupl" n="${nof G oups}">
<t ask>t askl</t ask>
<col | ecti on>col | ecti onl</coll ection>
<col | ecti on>col | ecti on2</col | ecti on>
</ group>
<group name="group2" n="15">
<col | ecti on>col | ecti onl</coll ection>

10

Topology

</ group>
</ mai n>

</t opol ogy>

DDS dlows to define variables which later can be used inside the topology file. During the preprocessing all
variable are replaced with their values. Variables are defined using the var tag which has two attributes name
and val ue. Inside the file variable can be used as follows ${variable_name}. In the above example we define
two variables ${appNameVar} and $nofGroups}.

When a particular task or collection is multiplied, sometimes it is necessary for the user to get the index of the
task or collection instance. This can be donein two different ways. In the definition of the executable path one can
use special tags %taskl ndex% and %collectionl ndex% to get the task and collection index respectivley. Before the
task execution these tags are replaced with real values. The second possibility isto get task and collection index
from environment. Two environment variables are defined for each task $DDS TASK_INDEX and $DDS COL-
LECTION_INDEX.

For each user task a set of environment variablesis popul ated.

Populated environment variables

o $DDS TASK_PATH - full path to the user task, for example, main/groupl/collection_12/task 3
+ $DDS GROUP_NAME - ID of the parent group.

+ $DDS COLLECTION_NAME - ID of the parent collection if any.

« $DDS TASK_NAME - ID of the task.

e $DDS TASK_INDEX - index of the task.

» $DDS COLLECTION_INDEX - index of the collection.

» $DDS SESSON_ID - DDS session this task belongs to.

In the exampl e above we define 2 properties - propertyl and property2. Asyou can seethepr oper t y tagisused
to define properties. name attribute is required and has to be unique for all properties.

Requirementsis away to tell DDS that atask or a collection has to be deployed on a particular computing node.
As of now only host name or worker node name which is defined in the SSH configuration file are supported.
Requirements are defined using decl r equi r ement tag which has a number of attributes. All attributes are
required. name attribute is an identifier and has to be unique for all requirements. type attribute is a type of the
requirement. value attribute is a string value of the requirement. In order to define the pattern of the host name use
either hostname or wnname values for the type attribute. val ue attribute for these requirement types can be either
afull host name or aregular expression which matches the required host name. Use hostname if the requirement
is defined based on the host name or wnname if the requirement is defined based on the SSH worker node name.

Task trigger defines a certain action which has to be performed whenever a specified condition is triggered. For
example, if task crashed DDSwill try to restart the task multipletimes. For the moment only predefined conditions
and actions are supported. Triggers are defined using decl t ri gger tag which has a number of attributes. All
attributes are required. name attribute is an identifier and has to be unique for all triggers. condition attribute is
a predefined condition. Has to be one of the following: TaskCrashed. action attribute is a predefined action. Has
to be one of the following: RestartTask. arg is an argument for the action, for example, it can specify the number
of attempts to restart the task.

In the next block we define tasks. For thisthedecl t ask tag isused. A task must also have the nane attribute
which is required and has to be unique for all declared tasks. The r equi r enent s element is optional and
specifiesthelist of the already declared requirementsfor thetask. Thet ri gger s element isoptional and defines
thelist of task triggers. The exe element defines path to executable. The path can include program options, even
options with quotes. DDS will automatically parse the path and extract program optionsin runtime. The exe tag
has an optional attribute r eachabl e, which defines whether executable is available on worker nodes. If it isnot
available, then DDS will take care of delivering it to an assigned worker in run-time.

11

Topology

In case when there is a script, that, for example sets environment, has to be executed prior to main executable one
can specify it using the env element. Theenv tag also haver eachabl e attribute.

If atask depends on some propertiesthis can de specified using thepr oper t i es tag together with alist of name
elements which specify 1D of already declared properties. Each property has an optional access attribute which
defines whether user task will read (r ead), write (wri t) or both read and write (r eadwr i t €) a property.
Defaultisreadwri t e.

Collectionsaredeclared usingthedecl col | ect i on tag. It containsalist of t ask tagswith IDswhich specified
already declared tasks. Task has to be declared before it can be used in the collection. As for the task collection
has an optional r equi r ement s element which is used to specify alist of the requirements for the collection.
If the requirement defined for both task and collection than collection requirement has higher priority and is used
for deployment.

Themai n tag declaresthetopology itself. In theexampleour main block consistsof onetask (taskl), one collection
(collectionl) and two groups (groupl and group?2).

A group isdeclared using the gr oup tag. It has arequired attribute nane, which is used to uniquely identify the
group and optional attribute n, which defines multiplication factor for the group. In the example groupl consists of
onetask (taskl) and two collections (collection1 and collection2). group2 consists of one collection (collectionl).

7.3. Topology XML tag reference

Table7.1. Topology XML tags

Tag Description

t opol ogy Parents. No
Children: property,task,col |l ecti on,main
Attributes: nanme
Description:

Declares atopology.

<t opol ogy nane="nmnyTopol ogy" >

[... Definition of tasks,
properties, collections and
groups ...]

</t opol ogy>

var Parents: t opol ogy
Children: No
Attributes: name, val ue
Description:

Declares a variable which can be used inside the topology file as ${variable name}.

<var nanme="var 1" val ue="val uel"/ >
<var nane="var 2" val ue="val ue2"/ >

property Parents: t opol ogy

Children: No

12

Topology

Tag Description
Attributes: name

Description:

Declares a property.

<property name="propertyl"/>
<property name="property2"/>

decl require- Parents: t opol ogy
nent
Children: No
Attributes: nane, t ype, val ue

Description:

Declares arequirement for tasks and collections.

<decl requi renent nanme="requirenent 1" type="host nanme" val ue="+. gsi.de"/>
decl trigger Parents: t opol ogy

Children: No

Attributes: name, condi ti on,acti on,arg

Description:

Declares atask trigger.

<decl trigger nanme="trigger1l" condition="TaskCrashed" acti on="Restart Task
decl t ask Parents: t opol ogy

Children: exe, env, requi renent s,tri ggers,properties

Attributes: nane

Description:

Declares atask.

<decl task name="taskl">

<exe reachabl e="true">appl -1 -n</exe>

<env reachabl e="f al se">envl</env>

<r equi remrent s>
<name>r equi r emrent 1</ nane>

</requirenent >

<triggers>

<name>tri gger 1</ name>

</triggers>

<properties>
<nanme access="read" >propertyl</nane>

13

Topology

Tag Description
<name access="readw ite">property2</nane>
</ properties>
</ decl t ask>
decl col | ec- Parents. t opol ogy
tion
Children: t ask
Attributes: name
Description:

Declares a collection.

<decl col | ecti on nane="col |l ecti onl">
<t ask>t askl</t ask>
<t ask>t askl</t ask>

</ decl col | ecti on>

t ask Parents: col | ecti on, group
Children: No
Attributes: No
Description:

Specifies the unique ID of the already defined task.

<t ask>t ask1</t ask>
collection Parents. gr oup

Children: No

Attributes: No

Description:

Specifies the unique 1D of the already defined collection.

<col | ecti on>col | ectionl</collection>
group Parents. mai n

Children: t ask, col | ecti on

Attributes: name, n

Description:

Declares agroup.

<group nane="groupl" n="10">
<t ask>t askl</t ask>

14

Topology

Teag

exe (required)

env (optional)

requirenents
(optional)

Description

<col | ecti on>col | ecti onl</col |l ecti on>
<col | ecti on>col | ecti on2</col | ecti on>
</ group>

Parents. t opol ogy

Children: t ask, col | ecti on, group
Attributes: name

Description:

Declares amain group.

<mmi n nane="mi n">
<t ask>t askl</t ask>
<col | ecti on>col | ecti onl</coll ection>
<group nanme="groupl" n="10">
<t ask>t askl</t ask>
<col | ecti on>col | ecti onl</coll ection>
<col | ecti on>col | ecti on2</col | ecti on>
</ gr oup>
</ mai n>
Parents: decl t ask
Children: No
Attributesr eachabl e
Description:

Defines path to the executable or script for the task.

<exe reachabl e="true">appl -1 -n</exe>
Parents: decl t ask

Children: No

Attributes: r eachabl e

Description:

Defines the path to script that has to be executed prior to main executable.

<env reachabl e="f al se">set Env. sh</ env>
Parents: decl t ask, decl col | ecti on

Children: name

Attributes: No

Description

15

Topology

Tag Description
Defines alist of requirements.

<requi r ement s>
<nane>r equi r ement 1</ nane>
<nane>r equi r ement 2</ nane>
</requirenment s>

properties (op- Parents: decltask
tional)
Children: name
Attributes: No

Description

Defines alist of dependent properties.

<properties>
<name>pr opert yl</ name>
<name>pr opert y2</ name>
</ properties>
nanme (required) Parents. properti es
Children: No
Attributes access

Description

Defines an ID of the already declared property.

<nane>pr oper t y1</ name>

Table7.2. Topology XML attributes

Attribute Description
nane Use: required
Default: No

Tags: t opol ogy, property, decl requirenent, decl t ask, decl col | ecti on,
group, mai n

Restrictions:
String with minimum length of 1 character.
Description:

Defines identificator (ID) for topology, property, requirement, task, collection and group. 1D
has to be unique within its scope, i.e. ID for tasks has to be unique only for tasks.

16

Topology

Attribute Description
<t opol ogy name="nyTopol ogy" >

reachabl e Use: optiona
Default: true
Tags: exe, env
Restrictions: truelfalse
Description:

Definesif executable or script is available on the worker node.

<exe reachabl e="true">app -I|</exe>
<env>envil</ env>

n Use: optional
Default: 1
Tags: gr oup
Restrictions: unsigned integer 32-bit which is more or equal to 1
Description:

Defines multiplication factor for group.

<exe reachabl e="true">app -I|</exe>
<env>envl</env>

access Use: optional
Default: readwrite
Tags: name
Restrictions: read|writejreadwrite
Description:

Defines access type from user task to properties.

<nanme access="read" >propertyl</nane>
type Use: required

Tags: decl r equi r errent

Restrictions. hosthamelwnname

Description:

Defines the type of the requirement.

17

Topology

Attribute Description

<decl requi rement nane="requirenmentl" type="wnnane" val ue="wn2"/>
condi tion Use required

Tags: decl tri gger

Restrictions: TaskCrashed

Description:

Defines trigger condition.

<decl trigger nane="triggerl" condition="TaskCrashed" action="Restart Task" a
action Use: required

Tags: decl tri gger

Restrictions: RestartTask

Description:

Defines trigger action.

<decl trigger nane="trigger1l" condition="TaskCrashed" action="RestartTask" a

18

8. How to Start

8.1. Environment

In order to enable DDS environment you need to source the DDS_env. sh script. The script is located in the
directory where you installed PoD.

cd [DDS | NSTALLATI ON|
source DDS env. sh

8.2. Server

Use the dds-session command to st ar t /st op/l i st DDS sessions.

dds- sessi on start

8.3. Deploy Agents

In order to deploy agents you can use different DDS plug-ins.
8.3.1. Deploy-Agents using: SSH plug-in
DDS's SSH plug-in is the best and the fastest way to deploy DDS agents. When you don't have an RMS or you

want to use a Cloud based system or even if you want just to use resources around you, like computers of your
colleagues, then the plug-in is the best way to go.

First of all you need to define resources.

Then use dds-submit to deploy DDS agents on the given resources:

dds-subnit --rms ssh -c¢ FULL_PATH TO YOUR SSHPLUQ N _RESOURCE FI LE

8.4. Check availability of Agents

Using dds-info you can query different kinds of information from DDS. For example you can check how many
agents are aready online:

dds-info -n

or query more detailed info about agents:

dds-info -1

8.5. Activate Topology

Once you get enough online agents, you can activate them. Activation of agents means, that DDS will use the
given topology to distribute user tasks across available resources (agents):

19

How to Start

dds-topol ogy --activate FULL _PATH TO YOUR TOPOLOGY_FI LE

DDSwill automatically check whether available resources are actually sufficient to execute the given topology.

20

9. How to Test

XXXX

9.1. First Section

XXXX

21

10. Tutorials
10.1. Tutorial 1

This tutorial demonstrates how to deploy a simple topology of 2 types of tasks (TaskTypeOne and TaskTypeT-
wo). By default, there will be deployed one instance of TaskTypeTwo and 5 instances of TaskTypeOne. Addi-
tionally TaskTypeTwo subscribes on key-value property from TaskTypeOne, which name is TasklndexProperty.
Once TaskTypeTwo receives values of TasklndexProperty from all TaskTypeOne, it will set the ReplyProperty
property. Number of instances can be changed in the topology file (t ut ori al 1_t opo. xm) using --instances
option of TaskTypeOne. Please note that number of worker nodesin the SSH-plugin configuration file (t ut or -
i al 1_host s. cf g) hasto be changed accordingly.

After DDSisinstalled the tutorial can be found in $DDS_LOCATI ON tut ori al s/tutorial 1

The source code of tasksislocatedin" DDS_SRC DI R'/ dds-tutorial s/dds-tutoriall

Files of the tutorial

* task-type-one: executable of the task TaskTypeOne
* task-type-two: executable of the task TaskTypeTwo
* tutoriall_topo.xml: atopology file

« tutoriall hosts.cfg: a configuration file for DDS SSH plug-in

10.1.1. Usage

Before running the tutorial make sure that: 1) Default working directory ~/ t np/ dds_wn_t est must exist
before running the tutorial. The directory can be changed int ut ori al 1_host s. cf g. 2) SSH passwordless
access to the localhost is required.

cd $DDS LOCATION/ tutorial s/tutoriall
dds-session start --1ocal

dds-subnmit -r ssh -c tutoriall_hosts.cfg
dds-topol ogy --activate tutoriall topo.xm

10.1.2. Result

To check the result, change to ~/ t np/ dds_wn_t est . If the default setup was used, then there will be WN
directories located: wn, wn_1, wn_2, wn_3, wn_4, wn_5.

DDS catches output of tasks and saves it in log files under names [task_name]_[date time]_out|err.log. For ex-
ample: TaskTypeOne_2015- 07- 16- 11- 44- 42_6255430612052815609_out . | og

10.2. Tutorial 2

Thistutorial demonstrates how to use DDS custom commands for user task and for utility.

After DDSisinstalled the tutorial can be foundin $DDS_LOCATI OV tutori al s/tutorial 2
The source code of tasksislocatedin™" DDS_SRC DI R'/ dds-tutori al s/ dds-tutorial 2
Files of the tutorial

* task-custom-cmd: user task which receives and send DDS custom commands

22

Tutorials

e ui-custom-cmd: utility which connects to DDS commander and send custom commands to user tasks
* tutorial2_topo.xml: atopology file

* tutorial2_hosts.cfg: a configuration file for DDS SSH plug-in

10.2.1. Usage

Before running the tutorial make sure that: 1) Default working directory ~/ t np/ dds_wn_t est must exist
before running the tutorial. The directory can be changed int ut ori al 1_host s. cf g. 2) SSH passwordless
access to the localhost is required.

cd $DDS LOCATION/ tutorial s/tutorial2
dds-session start --1ocal

dds-subnmit -r ssh -c tutorial 2_hosts.cfg
dds-topol ogy --activate tutorial 2_topo.xm
ui - cust om comand

10.2.2. Result

To check the result, change to ~/ t np/ dds_wn_t est . If the default setup was used, then there will be WN
directories located: wn, wn_1, wn_2, wn_3, wn_4, wn_5.

DDS catches output of tasks and saves it in log files under names [task_name]_[date time]_out|err.log. For ex-
ample: TaskTypeOne_2015- 07- 16- 11- 44- 42_6255430612052815609_out . | og

After executing ui-custom-command there will be an output to the console with receiving and sending custom
commands. Also check output files of tasks.

23

11. Command-line interface

24

Command-lineinterface

Name

dds-session — start/stop DDS commander and manage DDS sessions
UNIX/Linux/OSX

Synopsis

dds- sessi on {[[start - - mi xed] | [stop SESSI ON_| D] | [stop_all] | [listal | | run]] | [set-default
SESSI ONLI D] | [clean - f]}

Description

Using this command users can perform a set of operations on DDS sessions, such asst art /st op DDS server
by creating new and stopping existing sessions. Userscan also | i st available sessionsor cl ean expired ones.

One user can start multiple DDS sessions. Each session will have its own DDS commander instance and will be
sandboxed, i.e. won't disturb other sessions of the same user.

Options

start
Start anew DDS session. DDS will automatically set the newly created session as a default one.

A single user can start as many DDS sessions as desired. Users are limited only by the resources of underlying
system.

Each DDS session spawns its own commander server. All sessions are completely isolated from each other.
At the server start DDS will test availability of DDS WN bin. packages and download them from the DDS
repository if they are missing. If the user provides - - m xed parmeter, then WN packages for all systems
(Linux, OS X) will be checked. By default DDS checks only for a package compatible with the local system
only.

To build abinary package for the local system, just issue:

make -j wn_bin
make -j install

stop
Stop a given DDS session specified by SESSI ON_I D. If no SESSI ON_| D argument is provided, the com-
mand will stop the default DDS session. But in this case the command will ask user to confirm the choice.

stop_all
Stop &l running DDS sessions.

list
List available DDS sessions. User must provide the filter criteria, eitheral | orrun

Withal | the command will list absolutly all existing sessions, including expired ones.
With r un the command will list only running DDS sessions.

set -defaul t
Setsagiven SESSI ON_| Das adefault session ID.

The default session ID is used by al DDS commands, when user doesn't provide a session ID explicitly in
the command line arguments.

25

Command-lineinterface

cl ean
The command cleans DDS sessions. It will remove all session related temporary files and logs. Be careful
using this command. The operation can't be undone.

For safety reason the command confirms with the user removal of each DDS session, but you can avoid this
by providing the - f argument.

Example 11.1. A dds-session command usage

$ dds-session start

DDS session | D cf84e72d-a3af - 4f d8- af 73- 4337e9434612

Checki ng preconpiled binaries for the | ocal systemonly:
dds-wr k-hbin-2.1.12. g7619ef 0- Dar wi n-uni versal .tar.gz - K

Starting DDS conmander. ..

Waiting for DDS Commander to appear online...

DDS conmmander appears online. Testing connection...

DDS commander is up and running.

DDS commander server: 60753

Startup tinme: 1061.46 ns

Default DDS session is set to cf84e72d-a3af-4fd8-af 73-4337e9434612
Currently runni ng DDS sessi ons:

cf 84e72d- a3af - 4f d8- af 73- 4337e9434612 [2018- 08-22T11: 53: 34Z7] RUNNI NG

$ dds-session list all
cf c8e86d- 157h- 404e- bde8- a32f 8b3c1331 [2018-08-21T13: 49: 357] STOPPED

5f dc6142- 497c- 433c- 8333- 721f 05eabe31 [2018- 08-21T14: 10: 397] STOPPED
* cf 84e72d- a3af - 4f d8- af 73- 4337e9434612 [2018- 08-22T11: 53: 34Z] RUNNI NG

$ dds-session stop cf84e72d- a3af - 4f d8- af 73- 43379434612

St oppi ng DDS conmander: cf84e72d- a3af - 4f d8- af 73- 4337e9434612
Sendi ng a graceful stop signal to Conmander (pid/sessionlD): 60753/ cf84e72d-a3af - 4f d8- a
dds- commander: self exiting (60753)...

26

Command-lineinterface

Name

dds-commander — manages DDS facility
UNIX/Linux/OSX

Synopsis
dds- commander [[-h, --help]|[-Vv, --version]]{[start]|[stop]}

Description

® Warning
The command must not be used directly. Please use the dds-session command instead.

27

Command-lineinterface

Name

dds-user-defaults — get and set global DDS options
UNIX/Linux/OSX

Synopsis

dds-user-defaults[[-h, --help]|[-v, --version]|[-V, --verbose]|[-p, --path]|[-
d, --default]][-c, --configarg][-S, --sessionarg][--ignore-default-sid][--de-
fault-session-id][--default-session-id-file][-f, --force]|[[--keyarg]]|[--w kp-

kg] |[--wrkscript]|[--rmnmB-sandbox-dir]|[--user-env-script]|[--server-info-file]]

Description

The dds-user -defaults command can be used to get and set global DDS options. It also can be used to get different
static settings, related to the current deployment.

Options

-h, --help
Shows usage options.

-V, --version
Shows version information.

-V, --verbose
Causes the command to verbose additional information and error messages.

-p, --path
Shows default DDS user defaults config file path.

-d, --default
Generates adefault DDS configuration file.

-f, --force
If the destination file exists, removesit and creates anew file, without prompting for confirmation. Can only
beused withthe-d, --defaul t options.

-c, --configarg
This options can be used together with other optionsto specify non-default location of the DDS configuration
file. By default the command uses ~/ . DDS/ DDS. cf g.

-s, --sessionarg
Use the specified DDS Session ID instead of a default one.

--ignore-default-sid
Forceto ignore a default sid.

--default-session-id
Show the current default session ID.

--default-session-id-file
Show the full path of the default session ID file.

--keyarg
Gets avalue for the given key from the DDS user defaults.

--wr kpkg
Shows the full path of the worker package. The path must be evaluated before use.

28

Command-lineinterface

--wrkscri pt
Shows the full path of the worker script. The path must be evaluated before use.

--rms-sandbox-dir
Shows the full path of the RMS sandbox directory. It returns server.sandbox_dir if it is not empty, otherwise
server.work_dir isreturned. The path must be evaluated before use.

--user-env-scri pt
Shows the full path of user's environment script for workers (if present). The path must be evaluated before
use.

--server-info-file
Shows the full path of the DDS server info file. The path must be evaluated before use.

29

Command-lineinterface

Name

dds-submimt — submits and activates DDS agents
UNIX/Linux/OSX

Synopsis

dds-subnmit [[-h, --hel p]|[-v, --version]][-], --list][-r, --rmsarg][-S, --session
arg]{[-c, --configarg]|[-n, --nunber arg]|[-S, --slotsarg]}
Description

The command is used to submit DDS agents to allocate resources for user tasks. Once enough agents are online
use the dds-topology command to activate the agents - i.e. distribute user tasks across agents and start them.

Options

-h, --help
Shows usage options.

-V, --version
Shows version information.

--1, --listarg
List all available RMS plug-ins.

--r, --rnearg
Defines a destination resource management system plug-in. Use "--list" to find out names of available RMS
plug-ins.

--s, --sessionarg
DDS Session ID.

--patharg
Defines a path to the root plug-ins directory. If not specified than default root plug-ins directory is used.

-c, --configarg
A plug-in's configuration file. It can be used to provide additional RM S options.

-n, --nunber arg
Defines a number of agents to spawn. This option can not be mixed with "--config".

-s, --slotsarg
Defines anumber of task slots per agent. This option can not be mixed with "--config".

30

Command-lineinterface

Name

dds-info — can be used to query different kinds of information from DDS commander server
UNIX/Linux/OSX

Synopsis

dds-info [[-h, --help]]|[-v, --version]][[-s, --sessionarg]]|[--commander-pid]|
[--status] |[-n, --active-count]|[-I|, --agents-list]|[--idle-count]]|][--execut-
i ng-count]|[--wait-count arg]|[--active-topol ogy]]

Description

The command can be used to query different kinds of information from DDS commander server.

Options

-h, --help
Shows usage options.

-V, --version
Shows version information.

-s, --sessionarg
DDS Session ID.

- - conmander - pi d
Return the pid of the commander server.

--status
Query current status of DDS commander server.

-n, --active-count
Returns a number of online dlots.

-1, --agents-list
Show detailed info about all online agents.

--idl e-count
Returns a number of idle dots.

- -executi ng- count
Returns a number of executing dlots.

--wait-count arg
The command will block infinitely until a required number of agents are available. Must be used together
with- - acti ve-count,--idl e- count or--executing-count

--active-topol ogy
Returns the name of the active topology.

31

Command-lineinterface

Name

dds-test — aDDS self-test utility
UNIX/Linux/OSX

Synopsis

dds-test [[-h, --help]|[-v, --version]][-s, --sessionarg][--verbose]{[-,--transport]}
Description

Thistool runs stress tests of DDS system.

Options

-h, --help

Shows usage options.

-V, --version
Shows version information.

--verbose
Causes the command to verbose additional information and error messages.

-s, --sessionarg
DDS Session ID.

-t, --transport
Performs transport test.

32

Command-lineinterface

Name

dds-topology — topology related commands
UNIX/Linux/OSX

Synopsis

dds-topol ogy [[-h, --help]|[-v, --version]]|[-V, --verbose]][--disable-valida-
tion]] |[-s, --sessionarg]|[--activatearg]|[--stop]|[--update arg]|[--validate
arg] |[- - t opol ogy- nane ar g]]

Description

This command allows to perform topology related tasks.

Options

-h, --help
Shows usage options.

-V, --version
Shows version information.

-V, --verbose
Causes the command to verbose additional information and error messages.

--di sabl e-validation
Switches off topology validation.

--s, --sessionarg
DDS Session ID.

--activatearg
Requests DDS to activate agents, i.e. distribute and start user tasks accoring to the given topology.

--updatearg
Requests DDS to update currently running topology with anew one.

--stop
Requests DDS to stop execution of user tasks. Stop the active topology.

--validatearg
Validates topology file against DDS's XSD schema.

- -t opol ogy- nane ar g
Get the name of the topology for a given topology file.

33

Command-lineinterface

Name

dds-agent-cmd — send commands to agent
UNIX/Linux/OSX

Synopsis

dds-agent-cnd [[-h, --help]|[-v, --version]|[conmand, --command arg]|[-S, --
sessionarg]]{[getl ogarg]{[-a, --all]}]|[update-keyarg]{[--keyarqg]|[--val ueargl}}

Description

This utility allows to send commands to DDS agents. Currently available commands are: getlog, update-key.
Options
getlogarg
Download al log files from active agents. All files from agents working directories with the extension "log"
will be tar/zip'ed into a single file and downloaded on DDS commander server machine into the directo-

ry specified by server.log_dir DDS configuration option and placed in the subdirectory "agents" (default:
~/ . DDS/ | og/ agent s)

Usage example:
dds-agent-cnd getlog -a

updat e- key arg
It forces an update of a given task's property in the topology. Name of the property and a new value should
be provided additionally (see- - key and - - val ue)
Usage example:
dds- agent -cnd updat e- key --key nykey --val ue new val ue

--key
Defines the key to update

--val ue
Defines anew value of the given key.

-a, --all
Send command to all activer agents.

--s, --sessionarg
DDS Session ID.

12. RMS plug-ins

12.1. For Developers
12.1.1. Basic concept

DDS offers a possihility for external developers to make their own RMS plug-ins.

Conceptually, each RMS plug-inisjust an executable, which usesasimple DDS plug-in APl and is able to deploy
and execute a DDS worker package on a corresponding RMS.

The following is abasic workflow:

» User requests to deploy DDS agents or a given RMS using the dds-submit --rms XXXX command. Where
XXXX isthe name of the plug-in user wants to use.

» DDScommander server receivesthe request, looks for a suitable plug-in (associated with the X XXX name) and
startsit. Plug-in has 2 minutes to connect back to commander to receive exact detail s about the submit request.

» Once plug-in is started it should contact with the DDS commander server using DDS API, receive details and
deploy agentson agiven RMS. That's so far it.

12.1.2. Requirements

» DDSrequires each plug-in to have the name according to the following format: dds- submi t - XXXX, where
XXXX isthe name of the plug-in (or name of RMS it wraps). All lower case characters.

» A DDS plug-in (executable) and all related files must be sandboxed in a dedicated folder: pat h/ dds- sub-
m t - XXXX/ . The folder path is provided as a commandline argument for al plug-ins. The default location of
plug-insis$DDS_LOCATI OV pl ugi ns/ dds- submi t - XXX/ .

» A DDS plug-in should take two command line arguments

[--idar g]
and

[--path ar g]

DDSwill call the plug-in with thiscommand line argumentsand will provide aunique ID and aplug-in directory
path. ID must be used when ever plug-in communicates with DDS commander server (see "plug-in-id" in the
API section for moreinfo). Plug-in's directory path can be used to access related files if needed.

» Plug-ins are responsible to remove al own temporary files on exit. DDS doesn't take ownership of any file
create by plug-ins.

12.1.3. API

The dds::intercom_api::CRM SPluginProtocol is a wrapper class for plug-in/*"DDD commander server" commu-
nication.

Once started and ready the plug-in should subscribe on the "submit and "message" command from the DDS com-
mander server.

CRVMSPI ugi nProt ocol prot("plug-in-id");

prot.onSubmit([](const SSubmit& submt) {
/1 1nplenent subnmit related functionality here.

35

http://dds.gsi.de/doc/api-docs/DDS/html/classdds_1_1intercom__api_1_1CRMSPluginProtocol.html

RMS plug-ins

/1l After submt has conpleted call stop() function.
prot.stop();

1)

prot.onMessage([] (const SMessage& _message) {
/1 Message from commander received.
/1 1mplenment related functionality here.

1)

onSubmit will deliver to the plugin-in the actual request dds::intercom_api::SSubmit. It can contain either a con-
figuration file (format of the file is plug-in depended) or simply a number of agentsto deploy. But it will always
contain the path to the worker package, which plug-in is supposed to deploy on RMS and execute. Additionally
developers can use a DDS command line tools to find out the location of the worker package: dds-user-defaults
--wrkscript. Thisis especially useful when plug-ins use shell scripts.

Once ready the plug-in let's give a hit to DDS commander that we are online and ready for ajob:

/1 Let DDS conmander know that we are online and start listening for notifications.
prot.start();

After that commander will form asubmit request and will send it back to the plug-in. By default his call will block
the main thread until one of the conditionistrue:

* 10 minutes timeout,
 Failed connection to DDS commander or disconnection from DDS commander,
» Explicit call of the stop() function

If you do not want to stop the thread use:

// "false" nmeans that we do not bl ock the thread
prot.start(false);

If there are no subscribers the thread is not blocked in any case.

Once connected you can use pr ot 0. sendMessage to send messages. Those messages will be displayed to
user while he/she waits on dds-submit command. Be advised, that once commander receives the error message it
will forward it to the user and close connection asit means afailed submission.

We strongly recommend to protect CRM SPIuginProtocol calls in a try/catch block, as al methods can throw
std::exceptions:

try {
CRVMSPI ugi nProt ocol prot("plug-in-id");

prot.onSubmt([](const SSubmt& submt) {
/1 1nplenent subnmit related functionality here.

/1 report sonething back to a user
prot o. sendMessage(dds: :intercom api:: EMsgSeverity::info, "Text of the info nmessage");

/1l After submt has conpleted call stop() function.
prot.stop();

36

http://dds.gsi.de/doc/api-docs/DDS/html/structdds_1_1intercom__api_1_1SSubmit.html

RMS plug-ins

1)

prot.onMessage([] (const SMessage& _mnessage) {
/1 Message from commander received.
/1 1mplenment related functionality here.

1)

/1 Let DDS commander know that we are online and start |istening for notifications
prot.start();
} catch (exception& _e) {

/1l Report error to DDS commander

prot o. sendMessage(dds: : i ntercom api:: EMsgSeverity::error, e.what());

}

12.2. SSH

12.2.1. Resource definition

DDS's SSH plug-in is capable to deploy DDS agents on any resource machine available for password-less access
(public key, ssh agent, etc.) To define resources for the SSH plug-in we use a comma-separated values (CSV)
configuration file, in case if you want to deploy agents on several computing nodes. The ssh plug-in can aso
spawn agents on the local machine only. In this case you don't need a configuration file - just use dds-submit -n
X, where X isadesired number of agentsto spawn. Fields are normally separated by commas. If you want to put
acommain afield, you need to put quotes around it. Also 3 escape sequences are supported.

Table 12.1. DDS's SSH plug-in configuration fields

1 2 3 4 5
id (must be any a host name with additional SSH aremoteworking di- anumber of agentsto
unique string). or without a lo- params (could be rectory spawn

gin, in a form: lo- empty)
Thisid stringisused gin@host.fqdn
just to distinguish
different DDS work-
ersin the plug-in.

Example 12.1. An example of an SSH plug-in configuration file

ri, anar @xg0527.gsi.de, -p24, /tnp/test, 10
this is a comrent
r2, user@xi 001. gsi . de,,/hone/ user/ dds, 10

125, user2@ost, , /tnp/test,

12.2.2. Example usage

Call using a given configuration file:

dds-subnit -r ssh -c your-ssh-Resource-definition-config-file

Call using alocal system only to spawn 10 DDS agentson it:

37

RMS plug-ins

dds-submt -r ssh -n 10

12.3. Localhost
12.3.1. Introduction

DDS'slocalhost plug-inis capable to deploy DDS agents on alocal machine. Unlike SSH plug-in, localhost plug-
in doesn't require a password-less access (public key, ssh agent, etc.). The configuration file is not required for
localhost plug-in. The plug-in spawns 1 agent with a defined number of task slots on the local machine only. Just
use dds-submit --slots X, where X is a desired number of task slots.

12.3.2. Example usage
Call using alocal system only to spawn 1 DDS agent with 10 task dots:

dds-submt -r |ocal host --slots 10

12.4. SLURM
12.4.1. Sandbox directory

If your home directory isnot shared on the SLURM cluster, then you must define a sandbox directory, which DDS
will useto store SLURM job script and all jobs working directories will be also located there. Please note, that at
the moment DDS doesn't clean jobs working directories, therefore you are responsible to remove them if needed.

In order to set sandbox directory a DDS global option "server.sandbox_dir" have to be changed, which islocated
in the DDS configuration file DDS.cfg (default location: $HOVE/ . DDS/ DDS. cf g)

12.4.2. User configuration

Using dds-submit -c My_SLURM.cfg command you can provide additional configuration options for DDS
SLURM jobs. For example, the following command will submit 10 DDS agents (each with 50 task slots) and will
use additional SLURM configuration options provided in the My_SLURM cf g:

dds-submit -r slurm-n 10 --slots 50 -¢ My_SLURM cfg

@ Caution
The content of the custom SLURM job configuration file can be any sbatch parameter, except "srun"
and "--array".

For example, My_SLURM cf g can contain:

#SBATCH - A "account”
#SBATCH - -ti ne=00: 30: 00

12.4.3. Usage example
Submit 10 DDS agentsto SLURM cluster. On the SLURM submitter machine execute:

dds-subnmit -r slurm-n 10

38

RMS plug-ins

dds-submi t:
dds-submi t:
dds-submi t:
dds-submi t:
dds-submi t:
dds-submi t:
dds-submi t:
dds-submi t:
dds-submi t:
dds-submi t:

dds-subm t:

dds-subm t:

Cont acti ng DDS conmmander on | xbk0200. gsi . de: 20001 ..
Connection established.
Requesting server to process job submni ssion..

Server
Server
Server
Server
Server
Server
Server

Server

Server

reports:
reports:
reports:
reports:
reports:
reports:
reports:

reports:

reports:

Check the status of your SLURM jobs:

scontrol show job 9539993

Check the status of your DDS agents:

dds-info -In

Creati ng new wor ker package. .

RMS plug-in: /u/manafov/DDS/ 1. 1. 61. g474ddc6/ pl ugi ns/ dds-su
Initializing RVS plug-in..

RVMS plug-in is online. Startup tinme: 17ns.

Pl ug-in: CGenerating SLURM Job script..

Pl ug-in: Preparing job subn ssion..

Pl ug-in: pipe log engine: Submtting DDS Job on the SLURM

Pl ug-in: pipe log engine: SLURM Submtted batch job 95399

Pl ug-in: DDS agents have been subm tted

Once agents are online, use DDS as normal .

39

