
The DDS User Manual v3.6

The DDS User Manual v3.6

Table of Contents
1. Introduction .. 1

1.1. The Dynamic Deployment System .. 1
1.2. Basic concepts .. 1
1.3. Features ... 1

2. Requirements .. 2
2.1. Server/UI ... 2
2.2. Workers ... 2

3. Download ... 3
3.1. Download location ... 3
3.2. DDS Version Number Scheme .. 3

4. Installation .. 4
4.1. Step #1: Get the source .. 4

4.1.1. from DDS git repository .. 4
4.1.2. from DDS source tarball .. 4

4.2. Step #2: Configure the source .. 4
4.3. Step #3: Build and install ... 5
4.4. Step #4: DDS Environment ... 5

5. Configuration .. 6
6. Quick Start ... 8
7. Topology .. 9

7.1. Topology file .. 9
7.2. Topology file example ... 9
7.3. Topology XML tag reference ... 12

8. How to Start ... 19
8.1. Environment ... 19
8.2. Server .. 19
8.3. Deploy Agents .. 19

8.3.1. Deploy-Agents using: SSH plug-in ... 19
8.4. Check availability of Agents .. 19
8.5. Activate Topology ... 19

9. How to Test .. 21
9.1. First Section ... 21

10. Tutorials .. 22
10.1. Tutorial 1 ... 22

10.1.1. Usage .. 22
10.1.2. Result .. 22

10.2. Tutorial 2 ... 22
10.2.1. Usage .. 23
10.2.2. Result .. 23

11. Command-line interface ... 24
dds-session .. 25
dds-commander ... 27
dds-user-defaults .. 28
dds-submit .. 30
dds-info .. 31
dds-test ... 32
dds-topology ... 33
dds-agent-cmd ... 34

12. RMS plug-ins .. 35
12.1. For Developers .. 35

12.1.1. Basic concept .. 35
12.1.2. Requirements .. 35
12.1.3. API ... 35

12.2. SSH ... 37
12.2.1. Resource definition .. 37

iii

The DDS User Manual v3.6

12.2.2. Example usage .. 37
12.3. Localhost .. 38

12.3.1. Introduction .. 38
12.3.2. Example usage .. 38

12.4. SLURM .. 38
12.4.1. Sandbox directory .. 38
12.4.2. User configuration ... 38
12.4.3. Usage example .. 38

iv

List of Tables
4.1. DDS configuration variables .. 4
5.1. DDS configuration variables .. 6
7.1. Topology XML tags ... 12
7.2. Topology XML attributes .. 16
12.1. DDS's SSH plug-in configuration fields ... 37

v

List of Examples
7.1. A topology file example ... 9
11.1. A dds-session command usage ... 26
12.1. An example of an SSH plug-in configuration file ... 37

vi

1. Introduction
1.1. The Dynamic Deployment System
The Dynamic Deployment System (DDS) - is a tool-set that automates and significantly simplifies a deployment of
user defined processes (tasks) and their dependencies on any resource management system using a given topology.

In order to execute user tasks, DDS deploys agents. Each agent supports multiple tasks slots and therefore is able
to run and watchdog multiple tasks simultaneously. Agent can be deployed using the dds-submimt command.

1.2. Basic concepts
DDS:

• implements a single-responsibility-principle command line tool-set and APIs,

• treats users’ tasks as black boxes,

• doesn’t depend on RMS (provides deployment via SSH, when no RMS is present),

• supports workers behind FireWalls (outgoing connection from WNs required),

• doesn’t require pre-installation on WNs,

• deploys private facilities on demand with isolated sandboxes,

• provides a key-value properties propagation service for tasks,

• provides a simple custom command protocol, to help tasks to communicate between each other and with process
outside of the topology,

• provides a rules based execution of tasks.

1.3. Features

1

2. Requirements
2.1. Server/UI
DDS UI/Server/WN run on Linux and Mac OS X.

General requirements:

• Incoming connection on dds-commander port (configurable)

• a C++11 compiler

• cmake 3.11.0 or higher

• BOOST 1.67 or higher (built by a C++11 compiler, with C++11 enabled)

• shell: BASH (or a compatible one)

Additional requirements for SSH plug-in:

• A public key access (or password less, via ssh-agend, for example) to destination worker nodes.

2.2. Workers
General requirements:

• Outgoing connection on dds-commander's port (configurable). This is required by dds-agent to be able to con-
nect to DDS commander server

• shell: BASH (or a compatible one)

2

http://www.cmake.org/
http://www.boost.org/
http://en.wikipedia.org/wiki/Bash_(Unix_shell)
http://en.wikipedia.org/wiki/Bash_(Unix_shell)

3. Download
3.1. Download location
Please, use DDS's Download page to get the latest version and all other versions of DDS.

3.2. DDS Version Number Scheme
DDS version has a form of MAJOR.MINOR(.PATCH), where:

• MAJOR - the major number is increased when there are significant jumps in functionality.

• MINOR - the minor number is incremented when only minor features or significant fixes have been added.

• PATCH - represents a number of commits (patches) to a current major.minor pair.

Note

The DDS's version scheme reflects the fact that DDS is both a production system and a research
project. DDS uses odd minor version numbers to denote development releases and even minor ver-
sion numbers to denote stable releases.

3

http://dds.gsi.de/download.html

4. Installation

4.1. Step #1: Get the source

4.1.1. from DDS git repository

git clone https://github.com/FairRootGroup/DDS.git DDS-master
cd ./DDS-master

4.1.2. from DDS source tarball
Unpack DDS tarball:

tar -xzvf DDS-X.Y.Z-Source.tar.gz

Tar will created a new directory ./DDS-X.Y.Z-Source, where X.Y.Z represents a version of DDS.

cd ./DDS-X.Y.Z-Source

4.2. Step #2: Configure the source
You can adjust some configuration settings in the BuildSetup.cmake bootstrap file. The following is a list
of variables:

Table 4.1. DDS configuration variables

Variable Description

CMAKE_INSTALL_PREFIX Install path prefix, prepended onto install directo-
ries.(default $HOME/DDS/[DDS_Version])

CMAKE_BUILD_TYPE Set cmake build type. Possible options are: None, De-
bug, Release, RelWithDebInfo, MinSizeRel (default
Release)

BUILD_DOCUMENTATION Build source code documentation. Possible options are:
ON/OFF (default OFF)

BUILD_TESTS Build DDS tests. Possible options are: ON/OFF (default
OFF)

Now, prepare a build directory for an out-of-source build and configure the source:

mkdir build
cd build
cmake -C ../BuildSetup.cmake ..

Tip

If for some reason, for example a missing dependency, configuration failed. After you get the issue
fixed, right before starting the cmake command it is recommended to delete everything in the build
directory recursively. This will guaranty a clean build every time the source configuration is restarted.

4

Installation

4.3. Step #3: Build and install
Issue the following commands to build and install DDS:

make -j
make install

Installation Prefix

Please note, that by default DDS will be installed in $HOME/DDS/X.Y.Z, where X.Y.Z is a version of
DDS. However users can change this behavior by setting the install prefix path in the bootstrap script
BuildSetup.cmake. Just uncomment the setting of CMAKE_INSTALL_PREFIX variable and
change dummy MY_PATH_HERE to a desired path.

WN package

Users have a possibility to additionally build DDS worker package for the local platform. In case
if you have same OS types on all of the target machines and don't want to use WN packages from
the DDS binary repository, just issue:

make -j wn_bin
make install

the commands will build and install a DDS worker package for the given platform.

We also recommend to build boost without icu library support. This will reduce the size of the WN
package dramatically. The following is boost build options you can use to switch of icu:

./bootstrap.sh --without-icu ...

./b2 --disable-icu ...

4.4. Step #4: DDS Environment
In order to enable DDS's environment you need to source the DDS_env.sh script. Change to your newly installed
DDS directory and issue:

cd [DDS INSTALL DIRECTORY]
source DDS_env.sh

You need to source this script every time before using DDS in a new system shell. Simplify it by sourcing the
script in your bash profile.

5

http://site.icu-project.org

5. Configuration
The default location of DDS's configuration file is ~/.DDS/DDS.cfg. If missing, the configuration file will be
automatically created once the DDS environment script is sourced.

DDS's configuration engine looks for the configuration file in the following order:

1. $HOME/.DDS/DDS.cfg

2. $DDS_LOCATION/etc/DDS.cfg

3. $DDS_LOCATION/DDS.cfg

Table 5.1. DDS configuration variables

Key Description

server.work_dir DDS commander will use this directory to create ses-
sion files.

server.sandbox_dir Some RMS, like LSF and slurm for example, require
a shared files system to submit jobs. A shared folder
(shared between the submit host and worker nodes).
DDS will place RMS job script in this folder and will
also use this folder as a sandbox for DDS workers.

server.log_dir DDS commander will use this directory for logs.

server.log_severity_level A global log severity level. Used by all DDS modules.

Log severity can be one of the following
values:

• p_l - protocol low level events and higher,

• p_m - protocol middle level events and higher,

• p_h - protocol high level events and higher,

• dbg - general debug events and higher,

• inf - info events and higher,

• wrn - warning events and higher,

• err - error events and higher,

• fat - fatal errors.

server.log_rotation_size Log rotation size in MB. Once a log file reaches this
number DDS will automatically create another log file.

server.log_has_console_output 0 or 1. If 1, then DDS console outputs will be also saved
into the log.

server.commander_port_range_min and server.com-
mander_port_range_max

A port range used by the commander.

server.idle_time An idle time in seconds. DDS Commander and Agents
respect this number and will automatically shutdown if
inactive for this amount of seconds.

6

Configuration

Key Description

agent.work_dir Use this key if you want to relocate working directories
of DDS agents. By default they will use the directory
specified by "server.sandbox_dir".

7

6. Quick Start
• Download DDS source tarball.

• Install DDS from source.

cd [DDS INSTALLATION]
source DDS_env.sh
dds-session start
dds-submit --rms localhost --slots 50
dds-info -n
dds-info -l
dds-topology --activate $DDS_LOCATION/tutorials/tutorial1/tutorial1_topo.xml

Enable DDS environment.
Start DDS commander server.
Deploy 1 DDS agent with 50 task slots on the localhost.
Use dds-info to find out a number of agents, which are online.
Use dds-info to check detailed information about agents.
Set and activate the topology.

8

7. Topology
The definition of the topology by the user has to be simple and powerful at the same time. Therefore a simple and
powerful so called topology language has been developed.

The basic building block of the system is a task. Namely, a task is a user defined executable or a shell script, which
will be deployed and executed by DDS on a given Resource Management System.

In order to describe dependencies between tasks in a topology we use properties. In run-time properties will be
turned into simple key-value pairs. DDS uses its key-value propagation engine to make sure, that once property is
set by one task, it will be propagated to other depended tasks. DDS treats values of properties as simple strings and
doesn't do any special treatment/preprocessing on them. So, basically tasks can write anything into the values of
properties (256 char max). Any of depended tasks can set properties. Anytime property is set it will be propagated
to other depended tasks. (see for details TODO:"key-value propagation").

Tip

For example, if one task needs to connect with another task they can have the same property. A
"server" task can store its TCP/IP port and host in the property. Once the property set, DDS will
notice that and propagate it to other tasks.

Tasks can be grouped into collections and groups. Both collections and groups can be used to group several tasks.
The main difference between collections and groups is that a collection requests from DDS to execute its tasks
on the same physical machine, if resource allow that. This is useful if tasks suppose to communicate a lot or they
want to access the same shared memory. A set of tasks and task collections can be also grouped into task groups.
Another difference between groups and collection is that only groups can define multiplication factor for all its
child elements.

Main group defines the entry point for task execution. Only main group can contain other groups.

7.1. Topology file
At the moment we use an XML based file to store topologies. XML is chosen because it can be validated against
XSD schema. DDS's XSD schema file can be found in $DDS_LOCATION/share/topology.xsd.

<topology name="myTopology">
 [... Definition of tasks, properties, and collections ...]
 <main name="main">
 [... Definition of the topology itself, where also groups can be defined ...]
 </main>
</topology>

The file is basically divided on two parts: declaration and main part.

All properties, tasks and collections should be defined in the declaration part of the file. Users can define any
number of topology entities in that block, even some, which are not going to be used in the main block.

In the main block the topology itself is defined. Groups and multiplication factors are also defined in main block.

7.2. Topology file example
Example 7.1. A topology file example

<topology name="myTopology">

 <var name="appNameVar" value="app1 -l -n --taskIndex %taskIndex% --collectionIndex %collectionIndex%" />

9

Topology

 <var name="nofGroups" value="10" />

 <property name="property1" />
 <property name="property2" />

 <declrequirement name="requirement1" type="hostname" value="+.gsi.de"/>

 <decltrigger name="trigger1" condition="TaskCrashed" action="RestartTask" arg="5"/>

 <decltask name="task1">
 <requirements>
 <name>requirement1</name>
 </requirements>
 <exe reachable="true">${appNameVar}</exe>
 <env reachable="false">env1</env>
 <properties>
 <name access="read">property1</name>
 <name access="readwrite">property2</name>
 </properties>
 <triggers>
 <name>trigger1</name>
 </triggers>
 </decltask>
 <decltask name="task2">
 <exe>app2</exe>
 <properties>
 <name access="write">property1</name>
 </properties>
 </decltask>

 <declcollection name="collection1">
 <requirements>
 <name>requirement1</name>
 </requirements>
 <tasks>
 <name>task1</name>
 <name>task2</name>
 <name>task2</name>
 </tasks>
 </declcollection>

 <declcollection name="collection2">
 <tasks>
 <name>task1</name>
 <name>task1</name>
 </tasks>
 </declcollection>

 <main name="main">
 <task>task1</task>
 <collection>collection1</collection>
 <group name="group1" n="${nofGroups}">
 <task>task1</task>
 <collection>collection1</collection>
 <collection>collection2</collection>
 </group>
 <group name="group2" n="15">
 <collection>collection1</collection>

10

Topology

 </group>
 </main>

</topology>

DDS allows to define variables which later can be used inside the topology file. During the preprocessing all
variable are replaced with their values. Variables are defined using the var tag which has two attributes name
and value. Inside the file variable can be used as follows ${variable_name}. In the above example we define
two variables ${appNameVar} and ${nofGroups}.

When a particular task or collection is multiplied, sometimes it is necessary for the user to get the index of the
task or collection instance. This can be done in two different ways. In the definition of the executable path one can
use special tags %taskIndex% and %collectionIndex% to get the task and collection index respectivley. Before the
task execution these tags are replaced with real values. The second possibility is to get task and collection index
from environment. Two environment variables are defined for each task $DDS_TASK_INDEX and $DDS_COL-
LECTION_INDEX.

For each user task a set of environment variables is populated.

Populated environment variables

• $DDS_TASK_PATH - full path to the user task, for example, main/group1/collection_12/task_3

• $DDS_GROUP_NAME - ID of the parent group.

• $DDS_COLLECTION_NAME - ID of the parent collection if any.

• $DDS_TASK_NAME - ID of the task.

• $DDS_TASK_INDEX - index of the task.

• $DDS_COLLECTION_INDEX - index of the collection.

• $DDS_SESSION_ID - DDS session this task belongs to.

In the example above we define 2 properties - property1 and property2. As you can see the property tag is used
to define properties. name attribute is required and has to be unique for all properties.

Requirements is a way to tell DDS that a task or a collection has to be deployed on a particular computing node.
As of now only host name or worker node name which is defined in the SSH configuration file are supported.
Requirements are defined using declrequirement tag which has a number of attributes. All attributes are
required. name attribute is an identifier and has to be unique for all requirements. type attribute is a type of the
requirement. value attribute is a string value of the requirement. In order to define the pattern of the host name use
either hostname or wnname values for the type attribute. value attribute for these requirement types can be either
a full host name or a regular expression which matches the required host name. Use hostname if the requirement
is defined based on the host name or wnname if the requirement is defined based on the SSH worker node name.

Task trigger defines a certain action which has to be performed whenever a specified condition is triggered. For
example, if task crashed DDS will try to restart the task multiple times. For the moment only predefined conditions
and actions are supported. Triggers are defined using decltrigger tag which has a number of attributes. All
attributes are required. name attribute is an identifier and has to be unique for all triggers. condition attribute is
a predefined condition. Has to be one of the following: TaskCrashed. action attribute is a predefined action. Has
to be one of the following: RestartTask. arg is an argument for the action, for example, it can specify the number
of attempts to restart the task.

In the next block we define tasks. For this the decltask tag is used. A task must also have the name attribute
which is required and has to be unique for all declared tasks. The requirements element is optional and
specifies the list of the already declared requirements for the task. The triggers element is optional and defines
the list of task triggers. The exe element defines path to executable. The path can include program options, even
options with quotes. DDS will automatically parse the path and extract program options in runtime. The exe tag
has an optional attribute reachable, which defines whether executable is available on worker nodes. If it is not
available, then DDS will take care of delivering it to an assigned worker in run-time.

11

Topology

In case when there is a script, that, for example sets environment, has to be executed prior to main executable one
can specify it using the env element. The env tag also have reachable attribute.

If a task depends on some properties this can de specified using the properties tag together with a list of name
elements which specify ID of already declared properties. Each property has an optional access attribute which
defines whether user task will read (read), write (write) or both read and write (readwrite) a property.
Default is readwrite.

Collections are declared using the declcollection tag. It contains a list of task tags with IDs which specified
already declared tasks. Task has to be declared before it can be used in the collection. As for the task collection
has an optional requirements element which is used to specify a list of the requirements for the collection.
If the requirement defined for both task and collection than collection requirement has higher priority and is used
for deployment.

The main tag declares the topology itself. In the example our main block consists of one task (task1), one collection
(collection1) and two groups (group1 and group2).

A group is declared using the group tag. It has a required attribute name, which is used to uniquely identify the
group and optional attribute n, which defines multiplication factor for the group. In the example group1 consists of
one task (task1) and two collections (collection1 and collection2). group2 consists of one collection (collection1).

7.3. Topology XML tag reference
Table 7.1. Topology XML tags

Tag Description

topology Parents: No

Children: property, task, collection, main

Attributes: name

Description:

Declares a topology.

<topology name="myTopology">
 [... Definition of tasks,
 properties, collections and
 groups ...]
</topology>

var Parents: topology

Children: No

Attributes: name, value

Description:

Declares a variable which can be used inside the topology file as ${variable_name}.

<var name="var1" value="value1"/>
<var name="var2" value="value2"/>

property Parents: topology

Children: No

12

Topology

Tag Description

Attributes: name

Description:

Declares a property.

<property name="property1"/>
<property name="property2"/>

declrequire-
ment

Parents: topology

Children: No

Attributes: name, type, value

Description:

Declares a requirement for tasks and collections.

<declrequirement name="requirement1" type="hostname" value="+.gsi.de"/>

decltrigger Parents: topology

Children: No

Attributes: name, condition, action, arg

Description:

Declares a task trigger.

<decltrigger name="trigger1" condition="TaskCrashed" action="RestartTask" arg="5"/>

decltask Parents: topology

Children: exe, env, requirements, triggers, properties

Attributes: name

Description:

Declares a task.

<decltask name="task1">
 <exe reachable="true">app1 -l -n</exe>
 <env reachable="false">env1</env>
 <requirements>
 <name>requirement1</name>
 </requirement>
 <triggers>
 <name>trigger1</name>
 </triggers>
 <properties>
 <name access="read">property1</name>

13

Topology

Tag Description

 <name access="readwrite">property2</name>
 </properties>
</decltask>

declcollec-
tion

Parents: topology

Children: task

Attributes: name

Description:

Declares a collection.

<declcollection name="collection1">
 <task>task1</task>
 <task>task1</task>
</declcollection>

task Parents: collection, group

Children: No

Attributes: No

Description:

Specifies the unique ID of the already defined task.

<task>task1</task>

collection Parents: group

Children: No

Attributes: No

Description:

Specifies the unique ID of the already defined collection.

<collection>collection1</collection>

group Parents: main

Children: task, collection

Attributes: name, n

Description:

Declares a group.

<group name="group1" n="10">
 <task>task1</task>

14

Topology

Tag Description

 <collection>collection1</collection>
 <collection>collection2</collection>
</group>

main Parents: topology

Children: task, collection, group

Attributes: name

Description:

Declares a main group.

<main name="main">
 <task>task1</task>
 <collection>collection1</collection>
 <group name="group1" n="10">
 <task>task1</task>
 <collection>collection1</collection>
 <collection>collection2</collection>
 </group>
</main>

exe (required) Parents: decltask

Children: No

Attributes reachable

Description:

Defines path to the executable or script for the task.

<exe reachable="true">app1 -l -n</exe>

env (optional) Parents: decltask

Children: No

Attributes: reachable

Description:

Defines the path to script that has to be executed prior to main executable.

<env reachable="false">setEnv.sh</env>

requirements
(optional)

Parents: decltask, declcollection

Children: name

Attributes: No

Description

15

Topology

Tag Description

Defines a list of requirements.

<requirements>
 <name>requirement1</name>
 <name>requirement2</name>
</requirements>

properties (op-
tional)

Parents: decltask

Children: name

Attributes: No

Description

Defines a list of dependent properties.

<properties>
 <name>property1</name>
 <name>property2</name>
</properties>

name (required) Parents: properties

Children: No

Attributes access

Description

Defines an ID of the already declared property.

<name>property1</name>

Table 7.2. Topology XML attributes

Attribute Description

name Use: required

Default: No

Tags: topology, property, declrequirement, decltask, declcollection,
group, main

Restrictions:

String with minimum length of 1 character.

Description:

Defines identificator (ID) for topology, property, requirement, task, collection and group. ID
has to be unique within its scope, i.e. ID for tasks has to be unique only for tasks.

16

Topology

Attribute Description

<topology name="myTopology">

reachable Use: optional

Default: true

Tags: exe, env

Restrictions: true|false

Description:

Defines if executable or script is available on the worker node.

<exe reachable="true">app -l</exe>
<env>env1</env>

n Use: optional

Default: 1

Tags: group

Restrictions: unsigned integer 32-bit which is more or equal to 1

Description:

Defines multiplication factor for group.

<exe reachable="true">app -l</exe>
<env>env1</env>

access Use: optional

Default: readwrite

Tags: name

Restrictions: read|write|readwrite

Description:

Defines access type from user task to properties.

<name access="read">property1</name>

type Use: required

Tags: declrequirement

Restrictions: hostname|wnname

Description:

Defines the type of the requirement.

17

Topology

Attribute Description

<declrequirement name="requirement1" type="wnname" value="wn2"/>

condition Use: required

Tags: decltrigger

Restrictions: TaskCrashed

Description:

Defines trigger condition.

<decltrigger name="trigger1" condition="TaskCrashed" action="RestartTask" arg="5"/>

action Use: required

Tags: decltrigger

Restrictions: RestartTask

Description:

Defines trigger action.

<decltrigger name="trigger1" condition="TaskCrashed" action="RestartTask" arg="5"/>

18

8. How to Start
8.1. Environment
In order to enable DDS environment you need to source the DDS_env.sh script. The script is located in the
directory where you installed PoD.

cd [DDS INSTALLATION]
source DDS_env.sh

8.2. Server
Use the dds-session command to start/stop/list DDS sessions.

dds-session start

8.3. Deploy Agents
In order to deploy agents you can use different DDS plug-ins.

8.3.1. Deploy-Agents using: SSH plug-in
DDS's SSH plug-in is the best and the fastest way to deploy DDS agents. When you don't have an RMS or you
want to use a Cloud based system or even if you want just to use resources around you, like computers of your
colleagues, then the plug-in is the best way to go.

First of all you need to define resources.

Then use dds-submit to deploy DDS agents on the given resources:

dds-submit --rms ssh -c FULL_PATH_TO_YOUR_SSHPLUGIN_RESOURCE_FILE

8.4. Check availability of Agents
Using dds-info you can query different kinds of information from DDS. For example you can check how many
agents are already online:

dds-info -n

or query more detailed info about agents:

dds-info -l

8.5. Activate Topology
Once you get enough online agents, you can activate them. Activation of agents means, that DDS will use the
given topology to distribute user tasks across available resources (agents):

19

How to Start

dds-topology --activate FULL_PATH_TO_YOUR_TOPOLOGY_FILE

DDS will automatically check whether available resources are actually sufficient to execute the given topology.

20

9. How to Test
xxxx

9.1. First Section
xxxx

21

10. Tutorials
10.1. Tutorial 1
This tutorial demonstrates how to deploy a simple topology of 2 types of tasks (TaskTypeOne and TaskTypeT-
wo). By default, there will be deployed one instance of TaskTypeTwo and 5 instances of TaskTypeOne. Addi-
tionally TaskTypeTwo subscribes on key-value property from TaskTypeOne, which name is TaskIndexProperty.
Once TaskTypeTwo receives values of TaskIndexProperty from all TaskTypeOne, it will set the ReplyProperty
property. Number of instances can be changed in the topology file (tutorial1_topo.xml) using --instances
option of TaskTypeOne. Please note that number of worker nodes in the SSH-plugin configuration file (tutor-
ial1_hosts.cfg) has to be changed accordingly.

After DDS is installed the tutorial can be found in $DDS_LOCATION/tutorials/tutorial1

The source code of tasks is located in "DDS_SRC_DIR"/dds-tutorials/dds-tutorial1

Files of the tutorial

• task-type-one: executable of the task TaskTypeOne

• task-type-two: executable of the task TaskTypeTwo

• tutorial1_topo.xml: a topology file

• tutorial1_hosts.cfg: a configuration file for DDS SSH plug-in

10.1.1. Usage
Before running the tutorial make sure that: 1) Default working directory ~/tmp/dds_wn_test must exist
before running the tutorial. The directory can be changed in tutorial1_hosts.cfg. 2) SSH passwordless
access to the localhost is required.

cd $DDS_LOCATION/tutorials/tutorial1
dds-session start --local
dds-submit -r ssh -c tutorial1_hosts.cfg
dds-topology --activate tutorial1_topo.xml

10.1.2. Result
To check the result, change to ~/tmp/dds_wn_test. If the default setup was used, then there will be WN
directories located: wn, wn_1, wn_2, wn_3, wn_4, wn_5.

DDS catches output of tasks and saves it in log files under names [task_name]_[date_time]_out|err.log. For ex-
ample: TaskTypeOne_2015-07-16-11-44-42_6255430612052815609_out.log

10.2. Tutorial 2
This tutorial demonstrates how to use DDS custom commands for user task and for utility.

After DDS is installed the tutorial can be found in $DDS_LOCATION/tutorials/tutorial2

The source code of tasks is located in "DDS_SRC_DIR"/dds-tutorials/dds-tutorial2

Files of the tutorial

• task-custom-cmd: user task which receives and send DDS custom commands

22

Tutorials

• ui-custom-cmd: utility which connects to DDS commander and send custom commands to user tasks

• tutorial2_topo.xml: a topology file

• tutorial2_hosts.cfg: a configuration file for DDS SSH plug-in

10.2.1. Usage
Before running the tutorial make sure that: 1) Default working directory ~/tmp/dds_wn_test must exist
before running the tutorial. The directory can be changed in tutorial1_hosts.cfg. 2) SSH passwordless
access to the localhost is required.

cd $DDS_LOCATION/tutorials/tutorial2
dds-session start --local
dds-submit -r ssh -c tutorial2_hosts.cfg
dds-topology --activate tutorial2_topo.xml
ui-custom-command

10.2.2. Result
To check the result, change to ~/tmp/dds_wn_test. If the default setup was used, then there will be WN
directories located: wn, wn_1, wn_2, wn_3, wn_4, wn_5.

DDS catches output of tasks and saves it in log files under names [task_name]_[date_time]_out|err.log. For ex-
ample: TaskTypeOne_2015-07-16-11-44-42_6255430612052815609_out.log

After executing ui-custom-command there will be an output to the console with receiving and sending custom
commands. Also check output files of tasks.

23

11. Command-line interface

24

Command-line interface

Name
dds-session — start/stop DDS commander and manage DDS sessions
UNIX/Linux/OSX

Synopsis
dds-session {[[start --mixed] | [stop SESSION_ID] | [stop_all] | [list all | run]] | [set-default
SESSION_ID] | [clean -f]}

Description
Using this command users can perform a set of operations on DDS sessions, such as start/stop DDS server
by creating new and stopping existing sessions. Users can also list available sessions or clean expired ones.

One user can start multiple DDS sessions. Each session will have its own DDS commander instance and will be
sandboxed, i.e. won't disturb other sessions of the same user.

Options
start

Start a new DDS session. DDS will automatically set the newly created session as a default one.

A single user can start as many DDS sessions as desired. Users are limited only by the resources of underlying
system.

Each DDS session spawns its own commander server. All sessions are completely isolated from each other.

At the server start DDS will test availability of DDS WN bin. packages and download them from the DDS
repository if they are missing. If the user provides --mixed parmeter, then WN packages for all systems
(Linux, OS X) will be checked. By default DDS checks only for a package compatible with the local system
only.

To build a binary package for the local system, just issue:

make -j wn_bin
make -j install

stop
Stop a given DDS session specified by SESSION_ID. If no SESSION_ID argument is provided, the com-
mand will stop the default DDS session. But in this case the command will ask user to confirm the choice.

stop_all
Stop all running DDS sessions.

list
List available DDS sessions. User must provide the filter criteria, either all or run

With all the command will list absolutly all existing sessions, including expired ones.

With run the command will list only running DDS sessions.

set-default
Sets a given SESSION_ID as a default session ID.

The default session ID is used by all DDS commands, when user doesn't provide a session ID explicitly in
the command line arguments.

25

Command-line interface

clean
The command cleans DDS sessions. It will remove all session related temporary files and logs. Be careful
using this command. The operation can't be undone.

For safety reason the command confirms with the user removal of each DDS session, but you can avoid this
by providing the -f argument.

Example 11.1. A dds-session command usage

$ dds-session start

DDS session ID: cf84e72d-a3af-4fd8-af73-4337e9434612
Checking precompiled binaries for the local system only:
 dds-wrk-bin-2.1.12.g7619ef0-Darwin-universal.tar.gz - OK
Starting DDS commander...
Waiting for DDS Commander to appear online...
DDS commander appears online. Testing connection...
DDS commander is up and running.

DDS commander server: 60753

Startup time: 1061.46 ms
Default DDS session is set to cf84e72d-a3af-4fd8-af73-4337e9434612
Currently running DDS sessions:
cf84e72d-a3af-4fd8-af73-4337e9434612 [2018-08-22T11:53:34Z] RUNNING

$ dds-session list all

 cfc8e86d-157b-404e-bde8-a32f8b3c1331 [2018-08-21T13:49:35Z] STOPPED
 5fdc6142-497c-433c-8333-721f05eabe31 [2018-08-21T14:10:39Z] STOPPED
 * cf84e72d-a3af-4fd8-af73-4337e9434612 [2018-08-22T11:53:34Z] RUNNING

$ dds-session stop cf84e72d-a3af-4fd8-af73-4337e9434612

Stopping DDS commander: cf84e72d-a3af-4fd8-af73-4337e9434612
Sending a graceful stop signal to Commander (pid/sessionID): 60753/cf84e72d-a3af-4fd8-af73-4337e9434612
dds-commander: self exiting (60753)...

26

Command-line interface

Name
dds-commander — manages DDS facility
UNIX/Linux/OSX

Synopsis
dds-commander [[-h, --help] | [-v, --version]] {[start] | [stop]}

Description

Warning

The command must not be used directly. Please use the dds-session command instead.

27

Command-line interface

Name
dds-user-defaults — get and set global DDS options
UNIX/Linux/OSX

Synopsis
dds-user-defaults [[-h, --help] | [-v, --version] | [-V, --verbose] | [-p, --path] | [-
d, --default]] [-c, --config arg] [-s, --session arg] [--ignore-default-sid] [--de-
fault-session-id] [--default-session-id-file] [-f, --force] [[--key arg] | [--wrkp-
kg] | [--wrkscript] | [--rms-sandbox-dir] | [--user-env-script] | [--server-info-file]]

Description
The dds-user-defaults command can be used to get and set global DDS options. It also can be used to get different
static settings, related to the current deployment.

Options
-h, --help

Shows usage options.

-v, --version
Shows version information.

-V, --verbose
Causes the command to verbose additional information and error messages.

-p, --path
Shows default DDS user defaults config file path.

-d, --default
Generates a default DDS configuration file.

-f, --force
If the destination file exists, removes it and creates a new file, without prompting for confirmation. Can only
be used with the -d, --default options.

-c, --config arg
This options can be used together with other options to specify non-default location of the DDS configuration
file. By default the command uses ~/.DDS/DDS.cfg.

-s, --session arg
Use the specified DDS Session ID instead of a default one.

--ignore-default-sid
Force to ignore a default sid.

--default-session-id
Show the current default session ID.

--default-session-id-file
Show the full path of the default session ID file.

--key arg
Gets a value for the given key from the DDS user defaults.

--wrkpkg
Shows the full path of the worker package. The path must be evaluated before use.

28

Command-line interface

--wrkscript
Shows the full path of the worker script. The path must be evaluated before use.

--rms-sandbox-dir
Shows the full path of the RMS sandbox directory. It returns server.sandbox_dir if it is not empty, otherwise
server.work_dir is returned. The path must be evaluated before use.

--user-env-script
Shows the full path of user's environment script for workers (if present). The path must be evaluated before
use.

--server-info-file
Shows the full path of the DDS server info file. The path must be evaluated before use.

29

Command-line interface

Name
dds-submimt — submits and activates DDS agents
UNIX/Linux/OSX

Synopsis
dds-submit [[-h, --help] | [-v, --version]] [-l, --list] [-r, --rms arg] [-s, --session
arg] {[-c, --config arg] | [-n, --number arg] | [-s, --slots arg]}

Description
The command is used to submit DDS agents to allocate resources for user tasks. Once enough agents are online
use the dds-topology command to activate the agents - i.e. distribute user tasks across agents and start them.

Options
-h, --help

Shows usage options.

-v, --version
Shows version information.

--l, --list arg
List all available RMS plug-ins.

--r, --rms arg
Defines a destination resource management system plug-in. Use "--list" to find out names of available RMS
plug-ins.

--s, --session arg
DDS Session ID.

--path arg
Defines a path to the root plug-ins directory. If not specified than default root plug-ins directory is used.

-c, --config arg
A plug-in's configuration file. It can be used to provide additional RMS options.

-n, --number arg
Defines a number of agents to spawn. This option can not be mixed with "--config".

-s, --slots arg
Defines a number of task slots per agent. This option can not be mixed with "--config".

30

Command-line interface

Name
dds-info — can be used to query different kinds of information from DDS commander server
UNIX/Linux/OSX

Synopsis
dds-info [[-h, --help] | [-v, --version]] [[-s, --session arg] | [--commander-pid] |
[--status] | [-n, --active-count] | [-l, --agents-list] | [--idle-count] | [--execut-
ing-count] | [--wait-count arg] | [--active-topology]]

Description
The command can be used to query different kinds of information from DDS commander server.

Options
-h, --help

Shows usage options.

-v, --version
Shows version information.

-s, --session arg
DDS Session ID.

--commander-pid
Return the pid of the commander server.

--status
Query current status of DDS commander server.

-n, --active-count
Returns a number of online slots.

-l, --agents-list
Show detailed info about all online agents.

--idle-count
Returns a number of idle slots.

--executing-count
Returns a number of executing slots.

--wait-count arg
The command will block infinitely until a required number of agents are available. Must be used together
with --active-count, --idle-count or --executing-count

--active-topology
Returns the name of the active topology.

31

Command-line interface

Name
dds-test — a DDS self-test utility
UNIX/Linux/OSX

Synopsis
dds-test [[-h, --help] | [-v, --version]] [-s, --session arg] [--verbose] {[-t, --transport]}

Description
This tool runs stress tests of DDS system.

Options
-h, --help

Shows usage options.

-v, --version
Shows version information.

--verbose
Causes the command to verbose additional information and error messages.

-s, --session arg
DDS Session ID.

-t, --transport
Performs transport test.

32

Command-line interface

Name
dds-topology — topology related commands
UNIX/Linux/OSX

Synopsis
dds-topology [[-h, --help] | [-v, --version] | [-V, --verbose] [[--disable-valida-
tion]] | [-s, --session arg] | [--activate arg] | [--stop] | [--update arg] | [--validate
arg] | [--topology-name arg]]

Description
This command allows to perform topology related tasks.

Options
-h, --help

Shows usage options.

-v, --version
Shows version information.

-V, --verbose
Causes the command to verbose additional information and error messages.

--disable-validation
Switches off topology validation.

--s, --session arg
DDS Session ID.

--activate arg
Requests DDS to activate agents, i.e. distribute and start user tasks accoring to the given topology.

--update arg
Requests DDS to update currently running topology with a new one.

--stop
Requests DDS to stop execution of user tasks. Stop the active topology.

--validate arg
Validates topology file against DDS's XSD schema.

--topology-name arg
Get the name of the topology for a given topology file.

33

Command-line interface

Name
dds-agent-cmd — send commands to agent
UNIX/Linux/OSX

Synopsis
dds-agent-cmd [[-h, --help] | [-v, --version] | [command, --command arg] | [-s, --
session arg]] {[getlog arg] {[-a, --all]} | [update-key arg] {[--key arg] | [--value arg]}}

Description
This utility allows to send commands to DDS agents. Currently available commands are: getlog, update-key.

Options
getlog arg

Download all log files from active agents. All files from agents' working directories with the extension "log"
will be tar/zip'ed into a single file and downloaded on DDS commander server machine into the directo-
ry specified by server.log_dir DDS configuration option and placed in the subdirectory "agents" (default:
~/.DDS/log/agents)

Usage example:

dds-agent-cmd getlog -a

update-key arg
It forces an update of a given task's property in the topology. Name of the property and a new value should
be provided additionally (see --key and --value)

Usage example:

dds-agent-cmd update-key --key mykey --value new_value

--key
Defines the key to update

--value
Defines a new value of the given key.

-a, --all
Send command to all activer agents.

--s, --session arg
DDS Session ID.

34

12. RMS plug-ins
12.1. For Developers

12.1.1. Basic concept
DDS offers a possibility for external developers to make their own RMS plug-ins.

Conceptually, each RMS plug-in is just an executable, which uses a simple DDS plug-in API and is able to deploy
and execute a DDS worker package on a corresponding RMS.

The following is a basic workflow:

• User requests to deploy DDS agents or a given RMS using the dds-submit --rms XXXX command. Where
XXXX is the name of the plug-in user wants to use.

• DDS commander server receives the request, looks for a suitable plug-in (associated with the XXXX name) and
starts it. Plug-in has 2 minutes to connect back to commander to receive exact details about the submit request.

• Once plug-in is started it should contact with the DDS commander server using DDS API, receive details and
deploy agents on a given RMS. That's so far it.

12.1.2. Requirements
• DDS requires each plug-in to have the name according to the following format: dds-submit-XXXX, where

XXXX is the name of the plug-in (or name of RMS it wraps). All lower case characters.

• A DDS plug-in (executable) and all related files must be sandboxed in a dedicated folder: path/dds-sub-
mit-XXXX/. The folder path is provided as a commandline argument for all plug-ins. The default location of
plug-ins is $DDS_LOCATION/plugins/dds-submit-XXX/.

• A DDS plug-in should take two command line arguments

[--id arg]
and

[--path arg]
DDS will call the plug-in with this command line arguments and will provide a unique ID and a plug-in directory
path. ID must be used when ever plug-in communicates with DDS commander server (see "plug-in-id" in the
API section for more info). Plug-in's directory path can be used to access related files if needed.

• Plug-ins are responsible to remove all own temporary files on exit. DDS doesn't take ownership of any file
create by plug-ins.

12.1.3. API
The dds::intercom_api::CRMSPluginProtocol is a wrapper class for plug-in/"DDD commander server" commu-
nication.

Once started and ready the plug-in should subscribe on the "submit and "message" command from the DDS com-
mander server.

CRMSPluginProtocol prot("plug-in-id");

prot.onSubmit([](const SSubmit& _submit) {
 // Implement submit related functionality here.

35

http://dds.gsi.de/doc/api-docs/DDS/html/classdds_1_1intercom__api_1_1CRMSPluginProtocol.html

RMS plug-ins

 // After submit has completed call stop() function.
 prot.stop();
});

prot.onMessage([](const SMessage& _message) {
 // Message from commander received.
 // Implement related functionality here.
});

onSubmit will deliver to the plugin-in the actual request dds::intercom_api::SSubmit. It can contain either a con-
figuration file (format of the file is plug-in depended) or simply a number of agents to deploy. But it will always
contain the path to the worker package, which plug-in is supposed to deploy on RMS and execute. Additionally
developers can use a DDS command line tools to find out the location of the worker package: dds-user-defaults
--wrkscript. This is especially useful when plug-ins use shell scripts.

Once ready the plug-in let's give a hit to DDS commander that we are online and ready for a job:

// Let DDS commander know that we are online and start listening for notifications.
prot.start();

After that commander will form a submit request and will send it back to the plug-in. By default his call will block
the main thread until one of the condition is true:

• 10 minutes timeout,

• Failed connection to DDS commander or disconnection from DDS commander,

• Explicit call of the stop() function

If you do not want to stop the thread use:

// "false" means that we do not block the thread
prot.start(false);

If there are no subscribers the thread is not blocked in any case.

Once connected you can use proto.sendMessage to send messages. Those messages will be displayed to
user while he/she waits on dds-submit command. Be advised, that once commander receives the error message it
will forward it to the user and close connection as it means a failed submission.

We strongly recommend to protect CRMSPluginProtocol calls in a try/catch block, as all methods can throw
std::exceptions:

try {
 CRMSPluginProtocol prot("plug-in-id");

 prot.onSubmit([](const SSubmit& _submit) {
 // Implement submit related functionality here.

 // report something back to a user
 proto.sendMessage(dds::intercom_api::EMsgSeverity::info, "Text of the info message");

 // After submit has completed call stop() function.
 prot.stop();

36

http://dds.gsi.de/doc/api-docs/DDS/html/structdds_1_1intercom__api_1_1SSubmit.html

RMS plug-ins

 });

 prot.onMessage([](const SMessage& _message) {
 // Message from commander received.
 // Implement related functionality here.
 });

 // Let DDS commander know that we are online and start listening for notifications
 prot.start();
 } catch (exception& _e) {
 // Report error to DDS commander
 proto.sendMessage(dds::intercom_api::EMsgSeverity::error, e.what());
 }

12.2. SSH

12.2.1. Resource definition
DDS's SSH plug-in is capable to deploy DDS agents on any resource machine available for password-less access
(public key, ssh agent, etc.) To define resources for the SSH plug-in we use a comma-separated values (CSV)
configuration file, in case if you want to deploy agents on several computing nodes. The ssh plug-in can also
spawn agents on the local machine only. In this case you don't need a configuration file - just use dds-submit -n
X, where X is a desired number of agents to spawn. Fields are normally separated by commas. If you want to put
a comma in a field, you need to put quotes around it. Also 3 escape sequences are supported.

Table 12.1. DDS's SSH plug-in configuration fields

1 2 3 4 5

id (must be any
unique string).

This id string is used
just to distinguish
different DDS work-
ers in the plug-in.

a host name with
or without a lo-
gin, in a form: lo-
gin@host.fqdn

additional SSH
params (could be
empty)

a remote working di-
rectory

a number of agents to
spawn

Example 12.1. An example of an SSH plug-in configuration file

r1, anar@lxg0527.gsi.de, -p24, /tmp/test, 10
this is a comment
r2, user@lxi001.gsi.de,,/home/user/dds,10
125, user2@host, , /tmp/test,

12.2.2. Example usage
Call using a given configuration file:

dds-submit -r ssh -c your-ssh-Resource-definition-config-file

Call using a local system only to spawn 10 DDS agents on it:

37

RMS plug-ins

dds-submit -r ssh -n 10

12.3. Localhost

12.3.1. Introduction
DDS's localhost plug-in is capable to deploy DDS agents on a local machine. Unlike SSH plug-in, localhost plug-
in doesn't require a password-less access (public key, ssh agent, etc.). The configuration file is not required for
localhost plug-in. The plug-in spawns 1 agent with a defined number of task slots on the local machine only. Just
use dds-submit --slots X, where X is a desired number of task slots.

12.3.2. Example usage
Call using a local system only to spawn 1 DDS agent with 10 task slots:

dds-submit -r localhost --slots 10

12.4. SLURM

12.4.1. Sandbox directory
If your home directory is not shared on the SLURM cluster, then you must define a sandbox directory, which DDS
will use to store SLURM job script and all jobs' working directories will be also located there. Please note, that at
the moment DDS doesn't clean jobs' working directories, therefore you are responsible to remove them if needed.

In order to set sandbox directory a DDS global option "server.sandbox_dir" have to be changed, which is located
in the DDS configuration file DDS.cfg (default location: $HOME/.DDS/DDS.cfg)

12.4.2. User configuration
Using dds-submit -c My_SLURM.cfg command you can provide additional configuration options for DDS
SLURM jobs. For example, the following command will submit 10 DDS agents (each with 50 task slots) and will
use additional SLURM configuration options provided in the My_SLURM.cfg:

dds-submit -r slurm -n 10 --slots 50 -c My_SLURM.cfg

Caution

The content of the custom SLURM job configuration file can be any sbatch parameter, except "srun"
and "--array".

For example, My_SLURM.cfg can contain:

#SBATCH -A "account"
#SBATCH --time=00:30:00

12.4.3. Usage example
Submit 10 DDS agents to SLURM cluster. On the SLURM submitter machine execute:

dds-submit -r slurm -n 10

38

RMS plug-ins

 dds-submit: Contacting DDS commander on lxbk0200.gsi.de:20001 ...
 dds-submit: Connection established.
 dds-submit: Requesting server to process job submission...
 dds-submit: Server reports: Creating new worker package...
 dds-submit: Server reports: RMS plug-in: /u/manafov/DDS/1.1.61.g474ddc6/plugins/dds-submit-slurm/dds-submit-slurm
 dds-submit: Server reports: Initializing RMS plug-in...
 dds-submit: Server reports: RMS plug-in is online. Startup time: 17ms.
 dds-submit: Server reports: Plug-in: Generating SLURM Job script...
 dds-submit: Server reports: Plug-in: Preparing job submission...
 dds-submit: Server reports: Plug-in: pipe log engine: Submitting DDS Job on the SLURM cluster...

 dds-submit: Server reports: Plug-in: pipe log engine: SLURM: Submitted batch job 9539993

 dds-submit: Server reports: Plug-in: DDS agents have been submitted

Check the status of your SLURM jobs:

scontrol show job 9539993

Check the status of your DDS agents:

dds-info -ln

Once agents are online, use DDS as normal.

39

